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Abstract  

The compensation points of this mixed spin ferrimagnetic system are examined by the use of the mean-field theory 

based on Bogoliubov inequality for the free energy. The ground-state phase diagram is constructed in order to show 

the first order transition lines separating the ordered and the disordered phases of the system at zero temperature. 

The influence of the single-ion anisotropies DA and DB, on the compensation points is studied in detail. The model 

exhibits up to four compensation temperatures for appropriate values of the single-ion anisotropies. 
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1. Introduction 

Over recent years there has been considerable interest in the study of two sublattice mixed-spin Ising 

ferrimagnetic systems. The mixed-spin Ising systems in comparison with the systems with one type of 

spins present less translational symmetry and a new type of critical temperature called a compensation 

temperature TK appears. The compensation temperature is a temperature which below the critical 

temperature, Tc, and at which the sublattice magnetizations compensate each other and the resultant 

magnetization vanishes [1]. Some compensation temperature points were obtained experimentally in 

Fe3O4 and, Mn3O4 super lattices [2], From the experimental point of view, previous studies show that at 

the compensation temperature, the coercivity of a material increases dramatically and at this point only 

a small conductor field is required to invert the sign of the magnetization [3–6]. Furthermore, the two 

sublattice mixed-spin ferrimagnetic systems are proposed to describe a certain type of molecular-based 

magnetic materials. These types of magnetic materials are studied experimentally [7-10] and the 

researches in these ferrimagnetic materials are of great interests due to their possible technological 

applications, especially in the magneto-optical recording [11, 12]. Zaim and Kerouad [13] indicated that 

mixed Ising spin models are useful models in industrial applications of emerging nanotechnology, which 

can be used for a variety of nano-devices, due to their reduced size and important magnetic properties 

such as high density magnetic memories, sensors and molecular imaging devices, etc. The existence of 

the compensation temperature points in the mixed-spin-1 and spin-3/2 Ising ferrimagnetic system and 

the influence of the crystal field (single ion anisotropies) or the transverse field on these compensation 

points was examined by various methods e.g. the mean-field approximation [14], the effective-field 

theory with correlations   [15-20], the cluster variational method with the pair approximation [21], the 

Beth lattice solution [22-23], and Monte Carlo simulation [24]. All of these methods indicate the 

existence of the compensation points in the system. The attention was devoted to the high order mixed 

spin ferrimagnetic systems and the compensation temperature points were found by using various 

methods. e.g. the critical and compensation temperatures for the mixed spin-3/2 and spin-5/2 [25], the 

mixed spin-3/2 and spin-2 [26] and the mixed spin-2 and spin-5/2 [27] Ising ferrimagnetic systems, on 

the Bethe lattice, was investigated by using the exact recursion equations and all these Ising systems 

(by using this method) exhibit compensation temperature points. The effect of the single-ion 

anisotropies on the critical and the compensation points also investigated in the mixed spin-3/2 and 

spin-2 [28] and the mixed spin-2 and spin-5/2 [29] Ising ferrimagnetic systems by using the mean-field 

theory based on the Bogoliubov inequality for the free energy. Furthermore, the mixed spin-2 and spin-

3/2 Blume-Emery-Griffiths (BEG) Ising ferrimagnetic system is studied by the Bethe lattice approach 

[30]. In this system, compensation points have been detected for appropriate values of the system 

parameters. Finally, Monte Carlo simulation was used to study the effect of an external magnetic field 

on a mixed-spin-3/2 and spin-5/2 Ising ferrimagnet and during the consideration, compensation points 
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were detected depending on the region of the parameter space [31]. In this paper, we extend the 

investigations to high order mixed spin ferrimagnetic system. The system we consider is the mixed spin-

2 and the spin-7/2 ferrimagnetic system within the frame-work of the mean-field theory, in order to 

examine the existence of the compensation temperature points and to study the effects of the single-ion 

anisotropies of this system on the compensation temperature lines.  

This work includes, in Section 2, a formulation of the model and its mean-field solution. In this section, 

we give A Landau expression of the free energy in the order parameters and we prepare the required 

Equations for the sublattice magnetizations mA and mB, the total magnetization M and the free energy F. 

In Section 3, we construct the ground state phase diagram, we plot and discuss the compensation 

temperature lines as a function of temperature and we discuss the thermal variation of the total and the 

sublattice magnetizations for various values of the anisotropies in order to assure the existence of the 

compensation temperature points, Finally, in Section 3 we present our conclusions. 

 

2. Formulation of the model and its mean-field solution 

The model we are going to consider, consists of two dimensional sublattices. The sublattice A with spin 

values Si
A= 2, 1, 0 and the sublattice B with spin values Sj

B =  7/2,5/2,3/2,1/2. This system is 

described by the following Hamiltonian: 

ℋ = ℋij = −J∑  Si
A Sj

B

i,j

− DA∑(Si
A)
2

N 2⁄

i=1

− DB∑(Sj
B)
2

N 2⁄

j=1

 ,                 (1) 

In this Hamiltonian, the first summation is carried out only over nearest-neighbour pairs of spins on 

different sublattices and J is the exchange interaction between spins at sites i and j. DA and DB are the 

crystal-field interactions or the single-ion anisotropies acting on the spin Sj
B  and spin Sj

B, respectively.  

In order to solve this Hamiltonian approximately by using the mean-field  

solution, we employ a variational method based on the Bogoliubov inequality for the free energy [14], 

namely 

F(ℋ) ≤ Φ ≡ F0(ℋ0) + 〈ℋ −ℋ0〉0        (2), 

where ℋ is the Hamiltonian given by Eq (1) and F(ℋ) is the free energy of ℋ, ℋ0 is a trial Hamiltonian 

depending on variational parameters and F0(ℋ0) is the free energy of the trial Hamiltonian ℋ0. 〈.....〉0 

denotes a thermal average over the ensemble defined by ℋ0.  

To facilitate the calculations, we choose the simplest trial Hamiltonian, which is given by: 

ℋ0 = −∑ (αASi
A + DA(Si

A)
2
)i − ∑ (αBSj

B + DB(Sj
B)
2
)j       (3) 

Where 𝛼𝐴 and 𝛼𝐵 are the two variational parameters related to the two different spins. 

By using ℋ0, we can find the free energy per site and the equations of state (sublattice magnetization per 

site mA and mB): 

f ≡  
∅

N
≤ −

1

2β

(

 
 
 
 
 
 
 

ln (1 + exp(4βDa)(2cosh(2βαB) + 2A cosh(βαB)))

+ln

(

 
 
 
 
 
 
2exp (

49βDB
4

) cosh(3.5 βαA)

+2exp (
25βDB
4

) cosh(2.5 βαA)

+2exp (
9βDB
4
) cosh(1.5 βαA)

2exp (
βDB
4
) cosh(0.5 βαA) )

 
 
 
 
 
 

)

 
 
 
 
 
 
 

 

+
1

2
[−zJ〈Si

A〉0〈Sj
B〉0 + αA〈Si

A〉0 + αB〈Sj
B〉0] ,    (4) 
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where, N is the total number of sites of the lattice, z its coordination number and β = 1/kBT. The 

averaged sublattice magnetizations per site defined as mA=〈Si
A〉0 and mB=〈Sj

B〉0, where 〈Si
A〉0 and 〈Sj

B〉0, 

indicate the thermal (configurational) average and are given by 

 

 

mA=
4 sinh(2βαB)+2A sinh(βαB)

2 cosh(2βαB)+2A cosh(βαB)+E
                 (5) 

 

mB=
7sinh(

7

2
βαA)+5B sinh(

5

2
βαA)+3 C sinh(

3

2
βαA )+ D sinh(

1

2
βαA)

2(cosh(
7

2
βαA)+ B cosh(

5

2
βαA)+C cosh(

3

2
βαA )+D cosh(

1

2
 βαA))

  (6) 

where, 

A=exp(-3DA/kBT), E=exp(-4DA/kBT), B=exp(-6DB/kBT), 

 

C=exp(-10DB/kBT), D=exp(-12DB/kBT). 

We are here interested in studying the compensation temperature points, if they exist in the system, which 

can be determined when the total magnetization m vanishes. Therefore, we need equation for the total 

magnetization m, which is given by 

M=
mA+mB

2
      (7) 

By minimizing the free energy in terms of the variational parameters 𝛼𝐴 and 𝛼𝐵, we have obtained 

αA = JzmB ,          and                 αB = JzmA.           (8) 

Eqs (4-8) are mean–field equations which provide the magnetic properties of the system under 

consideration. The equations (5-7) have several solutions for mA and mB and the stable solution is the 

one which gives the minimum free energy. So, the detailed phase diagram is determined and performed 

by numerical analyses. Since the magnetizations mA and mB are very small, close to the second-order 

phase transition where the system changes from ordered ferrimagnetic phase to disordered paramagnetic 

phase, we can expand the equations (5-6) to obtain a Landau-like expansion. 

 

f = f0 + amA
2 + bmA

4 +mA
6 +⋯    (9) 

 

where the expansion coefficients are given by 

 

f0 = −
1

2β
(ln(1 + 2exp(4βDa)) +  ln(

2exp (
49βDB

4
) + 2exp (

25βDB

4
)

+2exp (
9βDB

4
) + 2exp (

βDB

4
)
)),         (10) 

 

 

a=         (11) 
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b = 

 

 

 

 

 

 

 

 

                                                         

                  

 

 

  (12) 

Where,     t = βzJ 

From equations (11) and (12), it is clear that the coefficients a and b are even functions in J which means 

that the critical points have the same values for both ferromagnetic system (when J>0) and ferrimagnetic 

system (when J<0). 

3. Results and discussions 

3.1 Ground state Phase diagram 

Before going into the detailed calculation of the phase diagram of the present system at higher 

temperatures, the ground-state phase diagram (see Fig. 1) is determined by comparing the energies given 

in the Hamiltonian (1) of different phases at zero temperature. As shown in this figure, the structure of 

the ground state of the system consists of eight ordered ferrimagnetic phases and four disordered phases, 

separated by first ordered lines, and these phases have different values of {mA, mB, qA, qB } 
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Fig. 1: Ground-state phase diagram of the mixed spin-2 and spin-7/2 Ising ferrimagnetic system 
on the (DA/z|J|, DB/z|J|) plane. In this phase diagram, there are eight ordered phases O1, O2, O3, O4, 

O5, O6, O7 and O8, and four disordered phases D1, D2, D3 and D4. 

 

The values {mA, mB, qA, qB} for the ordered phases are given as following: 

O1 = {−2,
7

2
, 4,

49

4
},  O2 = {−1,

7

2
, 1,

49

4
}            O3 = {−2,

5

2
, 4,

25

4
}, 

O4 = {−1,
5

2
, 1,
25

4
} , ````    O5 = {−2,

3

2
, 4,
9

4
} ,           O6 = {−1,

3

2
, 1,
9

4
} 

 O7 = {−2,
1

2
, 4,

1

4
},  O8 = {−1,

1

2
, 1,

1

4
}, 

and for the disordered phases are given as following: 

D1 = {0,0,0,
49

4
}, D2 = {0,0,0,

25

4
}, D3 = {0,0,0,

9

4
},  D4 = {0,0,0,

1

4
}. 

 

3.2 Compensation temperature points 

The compensation temperature Tk is the temperature where the resultant magnetization vanishes below 

the critical temperature. In this subsection, we will investigate whether the present mixed-spin Ising 

ferrimagnetic system may exhibit a compensation point (or points) at T≠0 when the single-ion 

anisotropies are changed. The compensation temperature Tk, if it exists in the system, can be determined 

from the condition that the total magnetization M in equation (7) vanishes (M=0) below its transition 
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temperature Tc. In Fig. 2 (a) and (b), the diagram kBTc /z|J| and kBTk/z|J| versus DB/z|J| are shown for 

some selected values of  DA/z|J. In these two figures, the solid lines represent a part of the second-order 

transition lines separating the paramagnetic and ferrimagnetic phases. These lines were obtained 

numerically by following this routine: In eqs (10-12) 1) When a=0 and b>0, the lines will be second 

order transition lines. 2) When a=0 and b=0, the points determine the tricritical points. 3) By comparing 

the free energy f given in eq (4) with f0 given in eq (10), the first order transition lines (dashed line in 

the figure) can be determined when f= f0. 

As can be seen from figure 2 (a), when the selected values of DA/z|J| are DA/z|J|= 5.0, 1.0, 0.5, 0.0, 0.3, 

all the Tk curves emerge from the same point DA/z|J| = -0.5 at T = 0K, increase monotonically and 

terminate at the corresponding phase boundaries. The monotonical behavior of the curves indicates that 

only one compensation point may occur in this mixed spin ferrimagnetic system. It is clear from this 

figure also that as the values of DA/z|J| is increased, the intersection of the Tk curves with the Tc curves 

is moved to higher values of kBTc/z|J|. In figure.2 (b), when the values of DA/z|J| are selected to have the 

values DA/z|J| = -0.45, -0.47, -0.495, -0.499, a new type of compensation curves appear. In this values of 

DA/z|J|, the curves of Tk, for a small range of DB/z|J|, exhibit a non-monotonical behavior, such as the 

dotted curve for DA/z|J|=-0.499. It indicates that two, three or even four compensation points may occur, 

below the critical points, in this mixed-spin system. From this figure, it is clear that the system exhibits 

this interesting behavior in the points close to the point (DA/z|J|, DB/z|J|) =(-0.5, -0.5) in the ground-state 

phase diagram. 

 

          
                              

(a)                                                                                        (b) 

 

Fig. 2 The compensation points (dotted curves) versus the single-ion anisotropy DB/z|J| for some 

selected values of the single-ion anisotropy DA/|J|. (a) The curves show the positions of one 

compensation points only; (b) The curves show the positions of one, two, three and four 

compensation points. The solid and dashed curves represent the second-order and first-order 

transitions respectively 

 

3.3 Total and sublattice magnetizations 

Now, in order to confirm the existence of many compensation points, let us examine the total 

magnetization M as a function of temperature T. The total magnetization M versus T is plotted in the 

figures. 3.(a, b, c, d) for different values of DA/z|J| and DB/z|J| which chosen to locate on the region of 

the compensation curves shown in the figures 2.(a, b). In the figure. 3(a), one can see that the thermal 

variation of M exhibits one compensation point below the critical point Tc when the values of the single-

ion anisotropies are chosen to be as DA/z|J= 1.0 and DB/z|J= -0.45. while, it exhibits two compensation 

points when DA/z|J= -0.47 and DB/z|J= -0.499, as can be seen in the figure 3(b). Furthermore, it is clear 

that when DA/z|J= -0.499, the system exhibits three and four compensation points when DB/z|J= -0.5002 

and -0.4992, respectively, as shown in figures 3(a) and 3(b). These results clearly express that the 

existence of one, two, three, or four compensation points shown in figures 2. (a, b) is correctly reproduced 

in the thermal variations of the total magnetization M. From these four figures, it can be observed that 
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the magnitude of the total magnetization between the last compensation point and the critical temperature 

point is always smaller than that between any two compensation points.  

 

          
 

Fig. 3 (a, b) The thermal dependences of the total magnetization M for the mixed spin-2 and spin-

7/2 Ising ferrimagnetic system with z=1.0 (a) when DA/z|J|=1.0 and DB/z|J|=-0.45. (b) when 

DA/z|J|=-0.47 and DB/z|J|=-0.499. 

 

    
 

Fig. 3 (c, d) The thermal dependences of the total magnetization M for the mixed spin-2 and spin-

7/2 Ising ferrimagnetic system with z=1.0 (a) when DA/z|J|=-0.499 and DB/z|J|=-0.5002. (b) when 

DA/z|J|=-0.499 and DB/z|J|=-0.4992. 

 

Finally, in order to explain the reason for the occurrence of the compensation points in this mixed-spin 

ferrimagnetic system, we plot four curves which represent the variation of the absolute values of the 

sublattice magnetizations mA and mB with temperature at selected values of DA/z|J| and DB/z|J|. These 

curves are shown in the figures 4(a - d) with the same values of DA/z|J and DB/z|J, used in the figures 

3(a - d), respectively. In fig.4(a), when DA/z|J|= 1.0 and DB/z|J|= - 0.45, the absolute values of the 

sublattice magnetizations |mA| and |mB| take the saturation values |mA|=2.0 and |mB|= 
5

2
 at T=0K, in 

agreement with the ground-state phase diagram, (see Fig. 1). As the temperature increases, the sublattice 

magnetizations decreases and in the low-temperature region we have |mB|>|mA| but in this region, |mB| 

exhibits a rapid decrease, while mA exhibits a slow decrease and has a convex shape, as shown in Fig. 

4(a), and they intersect each other at the compensation point TK. As the temperature further increases, 

the values of |mA| becomes greater than the values of |mB| and they decrease by increasing the temperature 

until they vanish at the transition temperature Tc. In fig 4(b), when DA/z|J|= -0.47 and DB/z|J|= -0.499, 

as the temperature increases to values greater than the first compensation point TK1, where |mA| > |mB|, 

the sublattice magnetization |mA| may be reduced below the sublattice magnetization |mB|, before they 

fall to zero at the transition point Tc. 
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Fig. 4(a, b). The thermal variation of the absolute values of the sublattice magnetizations |mA| and 

|mB| for the mixed spin-2 and spin-7/2 Ising ferrimagnetic system (a) when DA/z|J|=1.0 and 

DB/z|J|=-0.45. (b) when DA/z|J|=-0.47 and DB/z|J|=-0.499. 

 

           

Fig. 4 (c, d) The thermal variation of the absolute values of the sublattice magnetizations |mA| and 

|mB| for the mixed spin-2 and spin-7/2 Ising ferrimagnetic system (a) when DA/z|J|=-0.499 and 

DB/z|J|=-0.5002. (b) when DA/z|J|=-0.499 and DB/z|J|=-0.4992. 

 

As a result, an additional intersection between the two curves of the sublattice magnetizations may appear 

at a high temperature and cause the appearance of the second compensation point TK2 as shown in figures. 

3(b) and 4(b). The last behaviour of the sublattice magnetization may occur three or four times to cause 

three points of intersection below the critical point when DA/z|J|= -0.47 and DB/z|J|= - 0.499, as shown 

in fig. 4(c) or four points of intersection, when DA/z|J|= -0.47 and DB/z|J|= - 0.499, as shown in figure. 

4(d). As a result, this mixed spin system may exhibit three and four compensation points, as shown in 

fig.3 (c) and 3(d), respectively. 

 

4.  Conclusions 

In this paper, we have used the mean-field theory based on Bogoliubov inequality for the Gibbs free 

energy to study the effects of two different anisotropies on the compensation temperature of the mixed 

spin-2 and spin-7/2 ferrimagnetic Ising system. The compensation temperature lines versus the single-

ion anisotropy DB (acting on the spin -2,) at selected values of the single-ion anisotropy DA (acting on 

the spin-7/2) are shown. Our study suggests that there is a strong dependence between the compensation 

temperature and the single-ion anisotropies DA and DB: From the compensation lines, we have shown 

that this mixed spin system may exhibit one, two, three or even four compensation points. We found also 

that the system may show some interesting behaviour in the total and sublattice magnetizations (see 
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Fig.3(c) and 4(d)). These results can be compared with the results appeared in the literature [28], [29], 

[30]. Finally, we suggest that it will be very interesting to check the existence of the compensation points 

by more reliable techniques such as renormalization-group approach or Monte-Carlo simulation, and we 

believe that the design and preparation of ferrimagnetic materials with such unusual behaviour 

(compensation points) will certainly open a new area of research on such materials.  
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